Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36146831

RESUMO

While antiretroviral drugs have transformed the lives of HIV-infected individuals, chronic treatment is required to prevent rebound from viral reservoir cells. People living with HIV also are at higher risk for cardiovascular and neurocognitive complications, as well as cancer. Finding a cure for HIV-1 infection is therefore an essential goal of current AIDS research. This review is focused on the discovery of pharmacological inhibitors of the HIV-1 Nef accessory protein. Nef is well known to enhance HIV-1 infectivity and replication, and to promote immune escape of HIV-infected cells by preventing cell surface MHC-I display of HIV-1 antigens. Recent progress shows that Nef inhibitors not only suppress HIV-1 replication, but also restore sufficient MHC-I to the surface of infected cells to trigger a cytotoxic T lymphocyte response. Combining Nef inhibitors with latency reversal agents and therapeutic vaccines may provide a path to clearance of viral reservoirs.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Antirretrovirais/uso terapêutico , Descoberta de Drogas , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos , Fatores de Virulência , Produtos do Gene nef do Vírus da Imunodeficiência Humana
2.
Antimicrob Agents Chemother ; 65(7): e0008621, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33846137

RESUMO

Marburg virus (MARV) VP40 protein (mVP40) directs egress and spread of MARV, in part, by recruiting specific host WW domain-containing proteins via its conserved PPxY late (L) domain motif to facilitate efficient virus-cell separation. We reported previously that small-molecule compounds targeting the viral PPxY/host WW domain interaction inhibited VP40-mediated egress and spread. Here, we report on the antiviral potency of novel compound FC-10696, which emerged from extensive structure-activity relationship (SAR) of a previously described series of PPxY inhibitors. We show that FC-10696 inhibits egress of mVP40 virus-like particles (VLPs) and egress of authentic MARV from HeLa cells and primary human macrophages. Moreover, FC-10696 treated-mice displayed delayed onset of weight loss and clinical signs and significantly lower viral loads compared to controls, with 14% of animals surviving 21 days following a lethal MARV challenge. Thus, FC-10696 represents a first-in-class, host-oriented inhibitor effectively targeting late stages of the MARV life cycle.


Assuntos
Marburgvirus , Animais , Células HeLa , Humanos , Camundongos , Liberação de Vírus
3.
ACS Infect Dis ; 6(2): 302-312, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31775511

RESUMO

The HIV-1 Nef accessory factor is critical to the viral life cycle in vivo and promotes immune escape of infected cells via downregulation of cell-surface MHC-I. Previously, we discovered small molecules that bind directly to Nef and block many of its functions, including enhancement of viral infectivity and replication in T cell lines. These compounds also restore cell-surface MHC-I expression in HIV-infected CD4 T cells from AIDS patients, enabling recognition and killing by autologous cytotoxic T lymphocytes (CTLs). In this study, we describe the synthesis and evaluation of a diverse set of analogs based on the original hydroxypyrazole Nef inhibitor core. All analogs were screened for the interaction with recombinant HIV-1 Nef by surface plasmon resonance (SPR) and for antiretroviral activity in TZM-bl reporter cells infected with HIV-1. Active analogs were ranked on the basis of an activity score that integrates three aspects of the SPR data (affinity, residence time, and extent of binding) with antiretroviral activity. The top scoring compounds bound tightly to Nef by SPR, with KD values in the low nM to pM range, and displayed very slow dissociation from their Nef target. These analogs also suppressed HIV-1 replication in donor peripheral blood mononuclear cells (PBMCs) with IC50 values in the 1-10 nM range without cytotoxicity, inhibited Nef-mediated IL-2-inducible tyrosine kinase (Itk) and hematopoietic cell kinase (Hck) activation, and rescued MHC-I downregulation in a Nef-transfected T cell line. The development of Nef inhibitors based on the structure-activity relationships defined here has promise as a new approach to antiretroviral therapy that includes a path to eradication of HIV-infected cells via the adaptive immune response.


Assuntos
Antirretrovirais/farmacologia , Antígenos de Histocompatibilidade Classe I/genética , Pirazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene nef do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Linhagem Celular , Regulação para Baixo , Desenvolvimento de Medicamentos , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Concentração Inibidora 50 , Leucócitos Mononucleares/virologia , Doadores de Tecidos
4.
ACS Med Chem Lett ; 9(7): 752-756, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034613

RESUMO

We have previously reported a prodrug strategy based on the marketed drug riluzole (2-amino-6-trifluoromethoxybenzothiazole), associated with the benefits of lower patient to patient variability of exposure and potentially once daily oral dosing, as opposed to the large variance and twice daily dosing, which is currently observed with the parent drug. Riluzole is a glutamate modulator that is currently approved by the US FDA to treat amyotrophic lateral sclerosis (ALS). Riluzole also strongly suppresses the growth of melanoma cells that express the type 1 metabotropic glutamate receptor (GRM1, mGluR1). Riluzole is a substrate for the variably expressed liver isozyme CYP1A2, which has been shown to contribute to the variance in exposure of riluzole in humans upon oral administration. In addition, an elevated Cmax following oral administration is a probable cause of increased liver enzyme levels in some patients. In order to mitigate these issues, a series of natural and unnatural dipeptide prodrugs of riluzole were prepared as products that bear lower first-pass hepatic clearance. The prodrugs were evaluated for their ability to produce riluzole in serum while remaining intact prior to absorption from the GI tract, characteristic of a type IIB prodrug. Here, we describe dipeptide conjugates of riluzole and report that the t-Bu-Gly-Sar-riluzole analog FC-3423 (6) is absorbed well and converts to riluzole in rats and mice in a regular and well-defined manner. FC-3423 strongly suppress tumor cell growth in mouse xenograft models of melanoma at a molar dose 10-fold less than that of riluzole itself.

5.
Tetrahedron ; 74(22): 2762-2768, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29760536

RESUMO

The 1,3-indandione scaffold is an important structural motif used in the preparation of a large number of industrial chemical and pharmaceutical compounds. However, few approaches allow for the direct C2 acylation on these building blocks. A method was developed using DMAP and EDCI, which is mild in reactivity, covers a diverse range of carboxylic acid acylating agents, is compatible with electron releasing and withdrawing substituents on the 1,3-indandione partner, and performs well in a polar aprotic solvent (for solubility reasons) This method cleanly afforded twenty five different products in yields of 32-96%.

6.
J Med Chem ; 60(14): 6451-6457, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28696695
7.
Bioorg Med Chem Lett ; 26(15): 3429-35, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27377328

RESUMO

We prepared a series of quinoxalin-2-mercapto-acetyl-urea analogs and evaluated them for their ability to inhibit viral egress in our Marburg and Ebola VP40 VLP budding assays in HEK293T cells. We also evaluated selected compounds in our bimolecular complementation assay (BiMC) to detect and visualize a Marburg mVP40-Nedd4 interaction in live mammalian cells. Antiviral activity was assessed for selected compounds using a live recombinant vesicular stomatitis virus (VSV) (M40 virus) that expresses the EBOV VP40 PPxY L-domain. Finally selected compounds were evaluated in several ADME assays to have an early assessment of their drug properties. Our compounds had low nM potency in these assays (e.g., compounds 21, 24, 26, 39), and had good human liver microsome stability, as well as little or no inhibition of P450 3A4.


Assuntos
Antivirais/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Quinoxalinas/farmacologia , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Proteínas da Matriz Viral/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/química , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/química , Relação Dose-Resposta a Droga , Ebolavirus/química , Células HEK293 , Humanos , Marburgvirus/química , Camundongos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 26(5): 1480-1484, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26852364

RESUMO

The HIV-1 Nef accessory factor enhances viral replication and promotes immune system evasion of HIV-infected cells, making it an attractive target for drug discovery. Recently we described a novel class of diphenylpyrazolodiazene compounds that bind directly to Nef in vitro and inhibit Nef-dependent HIV-1 infectivity and replication in cell culture. However, these first-generation Nef antagonists have several structural liabilities, including an azo linkage that led to poor oral bioavailability. The azo group was therefore replaced with either a one- or two-carbon linker. The resulting set of non-azo analogs retained nanomolar binding affinity for Nef by surface plasmon resonance, while inhibiting HIV-1 replication with micromolar potency in cell-based assays without cytotoxicity. Computational docking studies show that these non-azo analogs occupy the same predicted binding site within the HIV-1 Nef dimer interface as the original azo compound. Computational methods also identified a hot spot for inhibitor binding within this site that is defined by conserved HIV-1 Nef residues Asp108, Leu112, and Pro122. Pharmacokinetic evaluation of the non-azo B9 analogs in mice showed that replacement of the azo linkage dramatically enhanced oral bioavailability without substantially affecting plasma half-life or clearance. The improved oral bioavailability of non-azo diphenylpyrazolo Nef antagonists provides a starting point for further drug lead optimization in support of future efficacy testing in animal models of HIV/AIDS.


Assuntos
Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Administração Oral , Animais , Fármacos Anti-HIV/administração & dosagem , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , HIV-1/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Replicação Viral/efeitos dos fármacos
9.
PLoS Pathog ; 11(10): e1005220, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26513362

RESUMO

Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg) and arenaviruses (Lassa and Junín viruses), are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1) and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms.


Assuntos
Arenavirus/fisiologia , Filoviridae/fisiologia , Liberação de Vírus , Animais , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Células HEK293 , Células HeLa , Humanos , Proteína ORAI1 , Células Vero , Proteínas da Matriz Viral/fisiologia , Vírion/fisiologia
10.
Bioorg Med Chem Lett ; 25(2): 378-83, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25496770

RESUMO

The Gram-negative bacterium Acinetobacter baumannii is an opportunistic pathogen in humans and infections are poorly treated by current therapy. Recent emergence of multi-drug resistant strains and the lack of new antibiotics demand an immediate action for development of new anti-Acinetobacter agents. To this end, oxidative phosphorylation (OxPhos) was identified as a novel target for drug discovery research. Consequently, a library of ∼10,000 compounds was screened using a membrane-based ATP synthesis assay. One hit identified was the 2-iminobenzimidazole 1 that inhibited the OxPhos of A. baumannii with a modestly high selectivity against mitochondrial OxPhos, and displayed an MIC of 25µM (17µg/mL) against the pathogen. The 2-iminobenzimidazole 1 was found to inhibit the type 1 NADH-quinone oxidoreductase (NDH-1) of A. baumannii OxPhos by a biochemical approach. Among various derivatives that were synthesized to date, des-hydroxy analog 5 is among the most active with a relatively tight SAR requirement for the N'-aminoalkyl side chain. Analog 5 also showed less cytotoxicity against NIH3T3 and HepG2 mammalian cell lines, demonstrating the potential for this series of compounds as anti-Acinetobacter agents. Additional SAR development and target validation is underway.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/química , Antineoplásicos/química , Benzimidazóis/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células NIH 3T3 , Quinona Redutases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
11.
Tetrahedron Lett ; 55(30): 4193-4195, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25018567

RESUMO

We have found that α-amino acid amide derivatives of 2-aminobenzothiazoles undergo a time-dependent, thermal rearrangement in which the amine group attacks the 2-position carbon of the thiazole ring to form a 5,5-spiro ring system. This is followed by sulfur leaving and air oxidation to the corresponding symmetrical disulfide. The isolated yields of such products are quite high (>70%) if there is conformational bias to further promote the intramolecular reaction such as for the 2-aminobenzothiazole amides derived from proline or 4-aminopiperidine-4-carboxylic acid. This rearrangement has not been described previously for α-amino acid amide derivatives of 2-aminobenzothiazoles. However, a related reaction involving 2-semicarbazido benzothiazoles has been recently reported.

12.
J Virol ; 88(13): 7294-306, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741084

RESUMO

UNLABELLED: Budding of filoviruses, arenaviruses, and rhabdoviruses is facilitated by subversion of host proteins, such as Nedd4 E3 ubiquitin ligase, by viral PPxY late (L) budding domains expressed within the matrix proteins of these RNA viruses. As L domains are important for budding and are highly conserved in a wide array of RNA viruses, they represent potential broad-spectrum targets for the development of antiviral drugs. To identify potential competitive blockers, we used the known Nedd4 WW domain-PPxY interaction interface as the basis of an in silico screen. Using PPxY-dependent budding of Marburg (MARV) VP40 virus-like particles (VLPs) as our model system, we identified small-molecule hit 1 that inhibited Nedd4-PPxY interaction and PPxY-dependent budding. This lead candidate was subsequently improved with additional structure-activity relationship (SAR) analog testing which enhanced antibudding activity into the nanomolar range. Current lead compounds 4 and 5 exhibit on-target effects by specifically blocking the MARV VP40 PPxY-host Nedd4 interaction and subsequent PPxY-dependent egress of MARV VP40 VLPs. In addition, lead compounds 4 and 5 exhibited antibudding activity against Ebola and Lassa fever VLPs, as well as vesicular stomatitis and rabies viruses (VSV and RABV, respectively). These data provide target validation and suggest that inhibition of the PPxY-Nedd4 interaction can serve as the basis for the development of a novel class of broad-spectrum, host-oriented antivirals targeting viruses that depend on a functional PPxY L domain for efficient egress. IMPORTANCE: There is an urgent and unmet need for the development of safe and effective therapeutics against biodefense and high-priority pathogens, including filoviruses (Ebola and Marburg) and arenaviruses (e.g., Lassa and Junin) which cause severe hemorrhagic fever syndromes with high mortality rates. We along with others have established that efficient budding of filoviruses, arenaviruses, and other viruses is critically dependent on the subversion of host proteins. As disruption of virus budding would prevent virus dissemination, identification of small-molecule compounds that block these critical viral-host interactions should effectively block disease progression and transmission. Our findings provide validation for targeting these virus-host interactions as we have identified lead inhibitors with broad-spectrum antiviral activity. In addition, such inhibitors might prove useful for newly emerging RNA viruses for which no therapeutics would be available.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Preparações Farmacêuticas/metabolismo , Ligação Proteica/efeitos dos fármacos , Infecções por Vírus de RNA/tratamento farmacológico , Vírus de RNA/fisiologia , Bibliotecas de Moléculas Pequenas , Ubiquitina-Proteína Ligases/metabolismo , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus/efeitos dos fármacos , Western Blotting , Complexos Endossomais de Distribuição Requeridos para Transporte/antagonistas & inibidores , Teste de Complementação Genética , Humanos , Ubiquitina-Proteína Ligases Nedd4 , Infecções por Vírus de RNA/virologia , Vírus de RNA/efeitos dos fármacos , RNA Viral/genética , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Proteínas da Matriz Viral/antagonistas & inibidores , Vírion/efeitos dos fármacos , Vírion/fisiologia
13.
Bioorg Med Chem Lett ; 24(4): 1116-21, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24461299

RESUMO

We designed a series of anilino-indoylmaleimides based on structural elements from literature JAK3 inhibitors 3 and 4, and our lead 5. These new compounds were tested as inhibitors of JAKs 1, 2 and 3 and TYK2 for therapeutic intervention in rheumatoid arthritis (RA). Our requirements, based on current scientific rationale for optimum efficacy against RA with reduced side effects, was for potent, mixed JAK1 and 3 inhibition, and selectivity over JAK2. Our efforts yielded a potent JAK3 inhibitor 11d and its eutomer 11e. These compounds were highly selective for inhibition of JAK3 over JAK2 and TYK. The compounds displayed only modest JAK1 inhibition.


Assuntos
Compostos de Anilina/farmacologia , Janus Quinase 3/antagonistas & inibidores , Maleimidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Compostos de Anilina/síntese química , Compostos de Anilina/química , Relação Dose-Resposta a Droga , Humanos , Janus Quinase 3/metabolismo , Maleimidas/síntese química , Maleimidas/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 22(23): 7119-22, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23079530

RESUMO

We have developed a new series of progesterone receptor modulators based upon the 4-aryl-phenylsulfonamide. Initial work in the series afforded potent compounds with good properties, however an advanced intermediate proved to be genotoxic in a non-GLP Ames assay following metabolic activation. We subsequently solved this problem and identified advanced leads which demonstrated oral efficacy in rhesus monkey pharmacodynamic and kinetics models.


Assuntos
Receptores de Progesterona/agonistas , Receptores de Progesterona/antagonistas & inibidores , Sulfonamidas/química , Administração Oral , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular Tumoral , Meia-Vida , Humanos , Macaca mulatta , Masculino , Ratos , Receptores de Progesterona/metabolismo , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética
15.
Bioorg Med Chem ; 20(18): 5642-8, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22892214

RESUMO

Riluzole (1) is an approved therapeutic for the treatment of ALS and has also demonstrated anti-melanoma activity in metabotropic glutamate GRM1 positive cell lines, a mouse xenograft assay and human clinical trials. Highly variable drug exposure following oral administration among patients, likely due to variable first pass effects from heterogeneous CYP1A2 expression, hinders its clinical use. In an effort to mitigate effects of this clearance pathway and uniformly administer riluzole at efficacious exposure levels, several classes of prodrugs of riluzole were designed, synthesized, and evaluated in multiple in vitro stability assays to predict in vivo drug levels. The optimal prodrug would possess the following profile: stability while transiting the digestive system, stability towards first pass metabolism, and metabolic lability in the plasma releasing riluzole. (S)-O-Benzyl serine derivative 9 was identified as the most promising therapeutically acceptable prodrug.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Desenho de Fármacos , Melanoma/tratamento farmacológico , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Riluzol/metabolismo , Riluzol/farmacologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Citocromo P-450 CYP1A2/biossíntese , Citocromo P-450 CYP1A2/metabolismo , Estabilidade de Medicamentos , Humanos , Melanoma/metabolismo , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Riluzol/sangue , Riluzol/síntese química
16.
Biochem Pharmacol ; 82(11): 1709-19, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21854761

RESUMO

WAY-255348 is a potent nonsteroidal progesterone receptor (PR) antagonist previously characterized in rodents and nonhuman primates. This report describes the novel mechanism by which WAY-255348 inhibits the activity of progesterone. Most PR antagonists bind to and block PR action by inducing a unique "antagonist" conformation of the PR. However, WAY-255348 lacks the bulky side chains or chemical groups that have been associated with the conformation changes of helix 12 that lead to functional antagonism. We show that WAY-255348 achieves antagonist activity by binding to and subsequently preventing progesterone-induced nuclear accumulation, phosphorylation and promoter interactions of the PR. This effect was concentration dependent, as high concentrations of WAY-255348 alone are able to induce nuclear translocation, phosphorylation and subsequent promoter interactions resulting in partial agonist activity at these concentrations. However, at lower concentrations where nuclear accumulation and phosphorylation are prevented, the progesterone-induced DNA binding is blocked along with PR-dependent gene expression. Analysis of the PR conformation induced by WAY-255348 using a limited protease digestion assay, suggested that the WAY-255348 bound PR conformation was similar to that of a progesterone agonist-bound PR and distinct from steroidal antagonist-bound PR conformations. Furthermore, the recruitment and binding of peptides derived from nuclear receptor co-activators is consistent with WAY-255348 inducing an agonist-like conformation. Taken together, these data suggest that WAY-255348 inhibits PR action through a novel molecular mechanism that is distinct from previously studied PR modulators and may be a useful tool to further understanding of PR signaling pathways. Development of therapeutic molecules with this 'passive' antagonism mechanism may provide distinct advantages for patients with reproductive disorders or PR positive breast cancers.


Assuntos
Indóis/farmacologia , Pirróis/farmacologia , Receptores de Progesterona/antagonistas & inibidores , Transporte Ativo do Núcleo Celular , Ligação Competitiva , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Proteínas Correpressoras/metabolismo , Agonismo Parcial de Drogas , Humanos , Modelos Moleculares , Coativadores de Receptor Nuclear/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Conformação Proteica , Ensaio Radioligante , Receptores de Progesterona/agonistas , Receptores de Progesterona/genética
17.
Mol Pharmacol ; 80(1): 124-35, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21464197

RESUMO

The pregnane X receptor (PXR) is a master regulator of xenobiotic clearance and is implicated in deleterious drug interactions (e.g., acetaminophen hepatotoxicity) and cancer drug resistance. However, small-molecule targeting of this receptor has been difficult; to date, directed synthesis of a relatively specific PXR inhibitor has remained elusive. Here we report the development and characterization of a first-in-class novel azole analog [1-(4-(4-(((2R,4S)-2-(2,4-difluorophenyl)-2-methyl-1,3-dioxolan-4-yl)methoxy)phenyl)piperazin-1-yl)ethanone (FLB-12)] that antagonizes the activated state of PXR with limited effects on other related nuclear receptors (i.e., liver X receptor, farnesoid X receptor, estrogen receptor α, peroxisome proliferator-activated receptor γ, and mouse constitutive androstane receptor). We investigated the toxicity and PXR antagonist effect of FLB-12 in vivo. Compared with ketoconazole, a prototypical PXR antagonist, FLB-12 is significantly less toxic to hepatocytes. FLB-12 significantly inhibits the PXR-activated loss of righting reflex to 2,2,2-tribromoethanol (Avertin) in vivo, abrogates PXR-mediated resistance to 7-ethyl-10-hydroxycamptothecin (SN-38) in colon cancer cells in vitro, and attenuates PXR-mediated acetaminophen hepatotoxicity in vivo. Thus, relatively selective targeting of PXR by antagonists is feasible and warrants further investigation. This class of agents is suitable for development as chemical probes of PXR function as well as potential PXR-directed therapeutics.


Assuntos
Azóis/farmacologia , Receptores de Esteroides/agonistas , Animais , Linhagem Celular , Células Cultivadas , Cromatografia Líquida , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Receptor de Pregnano X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
18.
Bioorg Med Chem Lett ; 20(9): 2903-7, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20382019

RESUMO

A series of 4-(3-biaryl)quinolines with sulfone substituents on the terminal aryl ring (8) was prepared as potential LXR agonists. High affinity LXRbeta ligands with generally modest binding selectivity over LXRalpha and excellent agonist potency in LXR functional assays were identified. Many compounds had LXRbeta binding IC(50) values <10 nM while the most potent had EC(50) values <1.0 nM in an ABCA1 mRNA induction assay in J774 mouse cells with efficacy comparable to T0901317. Sulfone 8a was further evaluated in LDL (-/-) mice and shown to reduce atherosclerotic lesion progression.


Assuntos
Receptores Nucleares Órfãos/agonistas , Quinolinas/química , Sulfonas/química , Animais , Aterosclerose/tratamento farmacológico , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Humanos , Lipoproteínas LDL/deficiência , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Receptores X do Fígado , Camundongos , Camundongos Knockout , Microssomos/metabolismo , Receptores Nucleares Órfãos/metabolismo , Ratos , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/uso terapêutico
19.
J Med Chem ; 53(8): 3296-304, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20350005

RESUMO

A series of phenyl sulfone substituted quinoxaline were prepared and the lead compound 13 (WYE-672) was shown to be a tissue selective LXR Agonist. Compound 13 demonstrated partial agonism for LXRbeta in kidney HEK-293 cells but did not activate Gal4 LXRbeta fusion proteins in huh-7 liver cells. Although 13 showed potent binding affinity to LXRbeta (IC(50) = 53 nM), it had little binding affinity for LXRalpha (IC(50) > 1.0 microM) and did not recruit any coactivator/corepressor peptides in the LXRalpha multiplex assay. However, compound 13 showed good agonism in THP-1 cells with respect to increasing ABCA1 gene expression and good potency on cholesterol efflux in THP-1 foam cells. In an eight-week lesion study in LDLR -/- mice, compound 13 showed reduction of aortic arch lesion progression and no plasma or hepatic triglyceride increase. These results suggest quinoxaline 13 may have an improved biological profile for potential use as a therapeutic agent.


Assuntos
Receptores Nucleares Órfãos/agonistas , Quinoxalinas/síntese química , Sulfonas/síntese química , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Animais , Área Sob a Curva , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Linhagem Celular , Colesterol/metabolismo , Duodeno/metabolismo , Meia-Vida , Humanos , Rim/metabolismo , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Especificidade de Órgãos , Receptores Nucleares Órfãos/genética , Quinoxalinas/química , Quinoxalinas/farmacologia , Ensaio Radioligante , Relação Estrutura-Atividade , Sulfonas/química , Sulfonas/farmacologia , Ativação Transcricional , Triglicerídeos/metabolismo
20.
Bioorg Med Chem Lett ; 20(8): 2512-5, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20236823

RESUMO

Antagonism of the gonadotropin releasing hormone (GnRH) receptor has resulted in positive clinical results in reproductive tissue disorders such as endometriosis and prostate cancer. Following the recent discovery of orally active GnRH antagonists based on a 4-piperazinylbenzimidazole template, we sought to investigate the properties of heterocyclic isosteres of the benzimidazole template. We report here the synthesis and biological activity of eight novel scaffolds, including imidazopyridines, benzothiazoles and benzoxazoles. The 2-(4-tert-butylphenyl)-8-(piperazin-1-yl)imidazo[1,2-a]pyridine ring system was shown to have nanomolar binding potency at the human and rat GnRH receptors as well as functional antagonism in vitro. Additional structure-activity relationships within this series are reported along with a pharmacokinetic comparison to the benzimidazole-based lead molecule.


Assuntos
Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Piperazinas/síntese química , Piperazinas/farmacologia , Receptores LHRH/antagonistas & inibidores , Animais , Disponibilidade Biológica , Células Cultivadas , Meia-Vida , Compostos Heterocíclicos/farmacocinética , Humanos , Masculino , Piperazinas/farmacocinética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...